Roll No. \square
Total No. of Questions : 09

> B.Tech.(2008-2010 Batches) (Sem.-2) ENGINEERING MATHEMATICS - II
> Subject Code : AM-102
> Paper ID : [A0119]

Time: 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION - B \& C have FOUR questions each.
3. Attempt any FIVE questions from SECTION B \& C carrying EIGHT marks each.
4. Select atleast TWO questions from SECTION - B \& C.

SECTION-A

1. Write briefly :
a) Define L.I and L.D vectors.
b) Define Clairaut's equation.
c) Define Cayley Hamilton theorem.
d) What is the physical interpretation of curl \vec{f} ?
e) Prove that $\nabla \times(\phi \vec{f})=\nabla \phi \times \vec{f}+\phi \nabla \times \vec{f}$.
f) State Gauss Divergence theorem.
g) Define continuous density function.
h) Define F-test.
i) If the probability that a new born child is a male is 0.6 , find the probability that in a family of 5 children there are exactly three boys.
j) Define semi positive definite matrix.

SECTION-B

2. Using Gauss Jordan Method, find the inverse of the matrix $\left[\begin{array}{lll}3 & 2 & 4 \\ 2 & 1 & 1 \\ 1 & 3 & 5\end{array}\right]$.
3. Solve the differential equation $\left(x^{2}-y^{2}\right) d x-x y d y=0$.
4. Solve $(3 x+2)^{2} \frac{d^{2} y}{d x^{2}}+3(3 x+2) \frac{d y}{d x}-36 y=3 x^{2}+4 x+1$.
5. The differential equation for a circuit in which the self inductance and capacitance neutralize each other is $L \frac{d^{2} i}{d t^{2}}+\frac{i}{c}=0$. Find the current i as a function of t given that i is maximum current and $i=0$ when $t=0$.

SECTION-C

6. Evaluate $\nabla^{2}\left(\nabla \cdot\left(\frac{\vec{r}}{r^{2}}\right)\right)$.
7. Evaluate $\int_{c}\left(x^{2}+x y\right) d x+\left(x^{2}+y^{2}\right) d y$ where C is the square formed by the lines $x= \pm 1$, $Y= \pm 1$
8. In a normal distribution 31% of the items are under 45 and 8% are over 64 . Find the mean and the standard deviation of the distribution.
9. A random sample of 10 boys had the following I.Q

$$
70,120,110,101,88,83,95,98,107,100 .
$$

Do these data support the assumption of a population mean I.Q of 100 (at 5%) level of significance, $t(d . f=9)=2.26$.

